4TH ESO-ESMO-RCE
CLINICAL UPDATE ON RARE
ADULT SOLID CANCERS

29 November - 1 December 2019
Milan, Italy

Chairs:
J.Y. Blay, FR - P.G. Casali, IT - R.A. Stahel, CH

FURTHER INFORMATION AVAILABLE AT WWW.ESO.NET

ORGANISING SECRETARIAT: European School of Oncology (ESO) | Via Turati 29 | 20121 Milan | Italy | Marina Fregonese | raretumours@eso.net | ph +39 02 23902106

Held in collaboration with

In the framework of

COURSES AND SEMINARS
Update on neuroendocrine tumors

GASTROENTEROPANCREATIC NEUROENDOCRINE NEOPLASMS

Nicola Fazio, M.D., Ph. D.

Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors
European Institute of Oncology
Milan, Italy
DISCLOSURE

◆ Personal financial interests:

◆ Institutional financial interests:
Clinical trials (P.I., Steering committee): Novartis, Ipsen, Merck Serono, MSD, Pharmacyclics, Incyte, Halozyme, Roche, Astellas, Pfizer, FivePrime, BeiGene.

◆ Non-financial interests:
ESMO: Coordinator of the Neuroendocrine, Endocrine neoplasms and CUP Faculty
ENETS: advisory board chairman
AIOM: coordinator of neuroendocrine neoplasms guidelines
ITANET: Scientific committee member
OBJECTIVES

❖ To describe terminology, epidemiology and clinical characteristics of GEP NEN

❖ To review the management of patients with advanced disease

❖ To summarize the TKIs development in GEP NETs
OBJECTIVES

❖ To describe terminology, epidemiology and clinical characteristics of GEP NEN

❖ To review the management of patients with advanced disease

❖ To summarize the TKIs development in GEP NETs
<table>
<thead>
<tr>
<th>Terminology</th>
<th>Differentiation</th>
<th>Grade</th>
<th>Mitotic rate<sup>a</sup> (mitoses/2 mm²)</th>
<th>Ki-67 index<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NET, G1</td>
<td>Low</td>
<td>< 2</td>
<td>< 3%</td>
<td></td>
</tr>
<tr>
<td>NET, G2</td>
<td>Well differentiated</td>
<td>Intermediate</td>
<td>2–20</td>
<td>3–20%</td>
</tr>
<tr>
<td>NET, G3</td>
<td>High</td>
<td>> 20</td>
<td>> 20%</td>
<td></td>
</tr>
<tr>
<td>NEC, small cell type (SCNEC)</td>
<td>Poorly differentiated</td>
<td>High<sup>b</sup></td>
<td>> 20</td>
<td>> 20%</td>
</tr>
<tr>
<td>NEC, large cell type (LCNEC)</td>
<td></td>
<td>High<sup>b</sup></td>
<td>> 20</td>
<td>> 20%</td>
</tr>
<tr>
<td>MiNEN</td>
<td>Well or poorly differentiated<sup>c</sup></td>
<td>Variable<sup>c</sup></td>
<td>Variable<sup>c</sup></td>
<td>Variable<sup>c</sup></td>
</tr>
</tbody>
</table>
NETs: Incidence

Crude incidence rate in Europe
Rate x 100,000/year. Period of diagnosis 2000–2007. Error bars are 95% confidence intervals

- Rare neuroendocrine tumours
 - GEP – well differentiated not functioning endocrine carcinoma of pancreas and digestive system
 - GEP – well differentiated functioning endocrine carcinoma of pancreas and digestive system
 - GEP – poorly differentiated endocrine carcinoma of pancreas and digestive system(*)
 - GEP – mixed endocrine-exocrine carcinoma of pancreas and digestive system
- Endocrine carcinoma of thyroid gland
- Rare neuroendocrine carcinoma of skin
- Typical and atypical carcinoid of the lung
- Rare neuroendocrine carcinoma of other sites
- Rheochromocytoma malignant
- Paraganglioma

Data from www.rarecarenet.eu

Rare cancer definition < 6 new cases / 100,000 per year

Do not duplicate or distribute without permission from author and ESO
GEP NECs: epidemiology

Dasari et al., Cancer 2017
GEP NET: clinical presentation

At diagnosis mainly:

✓ **Metastatic** (mostly liver)

✓ **Non functioning** (no clinical syndrome)

✓ **Sporadic** (no genetic syndrome, like MEN-1 or VHL)

✓ **SSTR-2 positive** (at 68Ga-SSA-PET/CT)

Cives et al., CA Cancer J Clin 2018
OBJECTIVES

❖ To describe epidemiology and clinical characteristics of GEP NEN

❖ To review the management of patients with advanced disease

❖ To summarize the TKIs development in GEP NETs
FDA/EMA approved therapies for patients with advanced GEP NETs

- STZ in panNET
- Octreotide IFN in carcinoid syndrome
- Lanreotide in carcinoid syndrome

Timeline:
- ‘70
- ’80
- ’90
- 2011
- 2015
- 2016
- 2017

Do not duplicate or distribute without permission from author and ESO
FDA/EMA approved therapies for patients with advanced GEP NETs

- **STZ in panNET**
- **Octreotide IFN in carcinoid syndrome**
- **Lanreotide in carcinoid syndrome**
- **Sunitinib Everolimus in panNET**
- **Octreotide in midgut**
- **Lanreotide in GEP**
- **Everolimus in non functioning Lung and GI**
- **Telotristat in refractory carcinoid syndrome diarrhea**
- **PRRT in GEP NET**

Timeline:
- 1970
- 1980
- 1990
- 2011
- 2015
- 2016
- 2017

Do not duplicate or distribute without permission from author and ESO.
FDA/EMA approved therapies for patients with advanced GEP NETs

- STZ in panNET
- Octreotide IFN in carcinoid syndrome
- Lanreotide in carcinoid syndrome
- Sunitinib Everolimus in panNET
- 2011
- Octreotide in midgut
- Lanreotide in GEP
- 2015
- Everolimus in non functioning Lung and GI
- Telotristat in refractory carcinoid syndrome diarrhea
- PRRT in GEP NET
- Liver-directed treatments (surgical and not surgical)
- ‘70
- ‘80
- ‘90
- 2011
- 2015
- 2016
- 2017
- TMZ
- Oxaliplatin
Two issues

- In patients with advanced GEP NET there is no absolute evidence about a specific sequence or integration of therapies.

- No validated predictive factors for response/efficacy to some therapies are currently available in clinical practice.
SSTR-2: selection factor for PRRT
SSTR-2 grade of expression at SRS: Krenning scale

Response prediction for GEP NETs with 111In-pentetreotide uptake greater than kidney/spleen (Grade 4 of the Krenning scale) is only 60%.

Kwekkeboom et al., End Rel Cancer 2010
Bodei et al., Eur J Nucl Med Mol Imag 2018
PPQ: PRRT predictive quotient

PPQ → An algorithm that integrates blood-derived NET-specific gene transcripts (growth factor signaling and metabolic regulation) with tissue Ki67 values.

Overall the PPQ was 94% accurate for predicting responders and non-responders.

Bodei et al., Eur J Nucl Med Mol Imag 2018
G1-G2 GEP NETs:
Factors conditioning therapeutic decision

- Syndrome
 - Symptomatic
 - Low tumor burden
 - Asymptomatic
 - High tumor burden
- No syndrome
Factors conditioning therapeutic decision

- Body/tail
- Liver-only
- Potentially resectable

- Head
- Liver + extra-hepatic
- Never resectable
NET-dedicated multidisciplinary team (MDT)
Treatments for metastatic G1-G2 SSTR-2 + panNET: level of evidence

Phase III vs. Plb (panNET subgroup)
Phase III vs. Plb (panNET)
Retrospective / Phase II
Retrospective / Phase II / Phase III vs. chemo

SSA
Everolimus or Sunitinib
PRRT
Chemotherapy

Liver-directed treatments
Primary tumor removal

Do not duplicate or distribute without permission from author and ESO
“Patients with 5–20% Ki-67 pNET can be treated with chemotherapy”

“Factors that favour chemotherapy compared with targeted therapies:

✓ Bulky disease;
✓ Symptomatic patient;
✓ Rapid tumour progression in ≤ 6–12 months;
✓ Patients with a possible chance of achieving a response to allow for surgery (neoadjuvant option)”
Progressing metastatic NF G2-G3 SSTR-2 + GEP NET

NETTER-2 trial:
PRRT
vs.
OCT LAR HD
Metastatic NF G2 SSTR-2 + panNET: 2° line therapy

?
Chemotherapy
Sunitinib
Everolimus

COMPETE trial: Everolimus vs. PRRT
High grade GEP NENs
High grade panNENs: three categories

Overall survival of 136 patients with G3 GEP NEN according to subtype

Type A = well diff. + Ki-67 21-55 %

Type B = poorly diff. + Ki-67 21-55%

Type C = poorly diff. + Ki-67 > 55%

Mos (mo)

- Type A: 43
- Type B: 24
- Type C: 5

Milione et al., Neuroendocrinology 2016
Ki-67-related tumor response to platinum/etoposide in > 20% Ki-67 GEP NENs

250 pts with advanced GEP NENs

Tumor differentiation?

Sorbye H et al., Ann Oncol 2013
Nordic group retrospective series (250 pts):
tumor response to platinum/etoposide

Response rates

<table>
<thead>
<tr>
<th>Response</th>
<th>NEC High</th>
<th>NEC Low</th>
<th>NET G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>26</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>SD</td>
<td>21</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>PD</td>
<td>33</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

Survival

- NET G3

Progression Free Survival

- NET G3
- NEC low
- NEC high

Elvebakken, ENETS 2019 Poster oral presentation
High grade GEP NENs: three categories

NET G3
The most common for pancreas

- **NET G3**
 - WD
 - NET > 20% Ki-67
 - As in G2 GEP NET

NECs
The most common for colorectal

- **NEC Low**
 - PD
 - 21-55% Ki-67
 - Alkylating-based chemotherapy

- **NEC High**
 - PD
 - > 55% Ki-67
 - Platinum/etoposide

WD = well differentiated; **PD** = poorly differentiated
OBJECTIVES

❖ To describe terminology, epidemiology and clinical characteristics of GEP NETs

❖ To review the management of patients with advanced disease

❖ To summarize the TKIs development in GEP NETs
Novel TKIs in GEP NETs

<table>
<thead>
<tr>
<th>Compound</th>
<th>VEGFR</th>
<th>PDGFR</th>
<th>FGFR</th>
<th>CSF1R</th>
<th>KIT</th>
<th>FLT-3</th>
<th>RET</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>α</td>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunitinib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Axitinib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Surufatinib</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Phase III

![Do not duplicate or distribute without permission from author and ESO]
Efficacy and safety analyses of the TALENT trial (GETNE 1509): A phase II study of lenvatinib in patients (pts) with advanced G1/G2 pancreatic (panNETs) and gastrointestinal (giNETs) neuroendocrine tumors

Jaume Capdevila¹, Alberto Bongiovanni², Jorge Hernando³, Francesca Spada³, Carlos Lopez⁴, Alexandre Toulé⁵, Xavier Marino⁴, Angela Lamarca⁶, Salvatore Tafutò⁷, Ana Custodie⁸, Nicola Fazio⁹, Toni Ibrahim‡

¹Vall Hebron University Hospital and Vall Hebron Institute of Oncology (VHIO), Barcelona, Español; ²Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), Meldola; ³European Institute of Oncology, Milan; ⁴Universidade de Vigo University Hospital, Santander; ⁵Catalan Institute of Oncology (ICO), Bellvitge; ⁶The Christie NHS Foundation Trust, Manchester; ⁷Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples; ⁸La Paz University Hospital, Madrid.
PRIMARY ENDPOINT: OVERALL RESPONSE RATE (CENTRAL RADIOLOGY REVIEW)

<table>
<thead>
<tr>
<th></th>
<th>PanNETs (n=55)</th>
<th>GI-NETs (n=56)</th>
<th>Total (n=111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with tumor assessments</td>
<td>52</td>
<td>54</td>
<td>106*</td>
</tr>
<tr>
<td>Best overall response n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response (CR)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>21 (40.4%)</td>
<td>10 (18.5%)</td>
<td>31 (29.2%)</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>29 (55.8%)</td>
<td>41 (76%)</td>
<td>70 (66%)</td>
</tr>
<tr>
<td>Progressive disease (PD)</td>
<td>2 (3.8%)</td>
<td>0</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>0</td>
<td>3** (5.5%)</td>
<td>3 (2.8%)</td>
</tr>
</tbody>
</table>

*Five patients withdrew the informed Consent before the first post-basal tumor assessment.

**Central radiologist confirms that 3 patients did not have evaluable target lesions. They have been considered as not evaluable.
PROGRESSION-FREE SURVIVAL

PFS (gastrointestinal tumors)

Median = 15.4 months

PFS (pancreatic tumors)

Median = 15.6 months
#4979 Efficacy and Safety of Surufatinib in Patients with Well-Differentiated Advanced Extrapancreatic Neuroendocrine Tumors (NETS)

Results from the randomized phase III study (SANET-ep) (NCT02588170)
SANET-ep: PHASE III STUDY DESIGN

Study population
Progressive, advanced extrapancreatic NET

Randomization: 2:1
Stratification factors
- Treated or naive
- Pathological grade 1 or 2
- Tumor origins A, B or C

Surufatinib 300mg QD
Survival follow up

Placebo
Open-label surufatinib

Primary Endpoint:
- Investigator-assessed PFS

Secondary Endpoints:
- ORR, DCR, DoR, TTR, OS
- Safety and tolerability
INVESTIGATOR-ASSESSED PFS (PRIMARY)

SANET-ep clearly succeeded in meeting the superiority criteria of PFS.

Median PFS
- **Surufatinib**: 9.2 months (95% CI 7.4, 11.1)
- **Placebo**: 3.8 months (95% CI 3.7, 5.7)
- **Stratified HR**: 0.334 (95% CI 0.223, 0.499)
 \[p < 0.0001 \]

Statistical assumption: 273 patients planned based on the assumption of the median PFS of 8 months in placebo arm, HR of surufatinib treatment is 0.6 with a two sided alpha 0.05.
Most Common TEAEs with Frequency ≥ 20% (Safety Analysis Set)

<table>
<thead>
<tr>
<th>TEAEs</th>
<th>Surufatinib (N=129)</th>
<th>Placebo (N=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any grade</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>91 (70.5)</td>
<td>25 (19.4)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>83 (64.3)</td>
<td>47 (36.4)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>60 (46.5)</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Blood thyroid stimulating hormone increased</td>
<td>51 (39.5)</td>
<td>0</td>
</tr>
<tr>
<td>Blood bilirubin increased</td>
<td>50 (38.8)</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Aspartate aminotransferase increased</td>
<td>47 (36.4)</td>
<td>5 (3.9)</td>
</tr>
<tr>
<td>Fecal occult blood positive</td>
<td>46 (35.7)</td>
<td>0</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>41 (31.8)</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td>37 (28.7)</td>
<td>0</td>
</tr>
<tr>
<td>Alanine aminotransferase increased</td>
<td>32 (24.8)</td>
<td>4 (3.1)</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>29 (22.5)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Anemia</td>
<td>27 (20.9)</td>
<td>9 (7.0)</td>
</tr>
</tbody>
</table>
CLOSING REMARKS

✓ Although many different treatments are available no therapeutic sequence or integration has been validated so far for tumor growth control

✓ Therefore GEP NET patients should be preferably managed involving a NEN referral Centers with a NEN-dedicated MDT

✓ Predictive factors of response/efficacy are an urgent unmet need
European Institute of Oncology, ENETS CoE

IEO NEN MDT

Thanks!