UPDATE ON HEAD & NECK CANCERS

Oropharynx
The global incidence of oropharynx cancer
A steep rise in oropharynx cancer

Denmark 1977-2017
DAHANCA database

Oropharynx

Larynx

Number of patients

Year

70%

74%*

55%

33%

42%

37%

*p16-pos

Updated from Lassen Radiother Oncol 2010
TNM – UICC 8th classification

Oropharynx p16- negative tumors

Tx: primary tumor cannot be assessed
T0: no evidence of primary tumor
T1: Tumor ≤ 2 cm
T2: Tumor > 2 cm and ≤ 4 cm
T3: > 4 cm or with extension lingual surface of epiglottis*
T4a: invades: larynx, deep/extrinsic muscle of tongue, med. pterygoid, hard palate or mandible
T4b: invades: lat pterygoid m, pterygoid plate, lat nasopharynx, skull base or encases carotid artery

* Mucosal ext. to lingual surface of epiglottis from base of tongue and vallecula doesn’t constitute invasion of the larynx
TNM – UICC 8th classification

Oropharynx p16+ positive tumors

Tx: primary tumor cannot be assessed
T0: no evidence of primary tumor
T1: Tumor ≤ 2 cm
T2: Tumor > 2 cm and 4 cm
T3: > 4 cm or with extension lingual surface of epiglottis*
T4: invades: larynx, deep/extrinsic muscle of tongue (genioglossus, hyoglossus, palatoglossus, styloglossus), med pterygoid, hard palate or mandible, lat pterygoid m, pterygoid plate, lat nasopharynx, skull base or encases carotid artery

* Mucosal ext. to lingual surface of epiglottis from base of tongue and vallecula doesn’t constitute invasion of the larynx
TNM – UICC 8th classification

Oropharynx p16- negative tumors

N0: no regional node metastasis
Nx: regional nodes cannot be assessed
N1: single ipsilateral node, ≤ 3 cm
N2a: single ipsilateral node, > 3 cm and ≤ 6 cm
N2b: multiple ipsilateral nodes, ≤ 6 cm
N2c: contralateral or bilateral nodes, ≤ 6 cm
N3a: node > 6 cm without ECS
N3b: single/multiple node(s) with ECS
TNM – UICC 8th classification

Oropharynx p16+ positive tumors

N0: no regional node metastasis

Nx: regional nodes cannot be assessed

N1: unilateral metastasis in node(s), ≤ 6 cm

N2: contralateral or bilateral node(s), ≤ 6 cm

N3: node(s) > 6 cm
Considerations for treatment strategy

- Patient performance
- Co-morbidity
- Personal choice
- Tumor location
- Tumor extension
- Lymph node invasion
- Efficacy, functionality and morbidity
Treatment of early oropharynx cancer

Surgery for T1-2, N0-1

- Cold / cautery knife
- CO₂ laser
- TORS

Resection of the tumor and neck dissection when organ-function sparing surgery is suitable. Avoid multiple treatment when only one modality is enough!

<table>
<thead>
<tr>
<th></th>
<th>IMRT 2-y control</th>
<th>IMRT 2-y OS</th>
<th>TORS 2-y control</th>
<th>TORS 2-y OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisbruch et al multicenter</td>
<td>91%</td>
<td>96%</td>
<td>NA</td>
<td>89%</td>
</tr>
<tr>
<td>Galloway et al Fox Chase</td>
<td>92%</td>
<td>84%</td>
<td>NA</td>
<td>94%</td>
</tr>
<tr>
<td>Garden et al MDACC</td>
<td>97%</td>
<td>93%</td>
<td>NA</td>
<td>94%</td>
</tr>
<tr>
<td>Hodge et al Wisconsin</td>
<td>96%</td>
<td>94%</td>
<td>NA</td>
<td>94%</td>
</tr>
<tr>
<td>Mendenhall et al Florida</td>
<td>93%</td>
<td>NA</td>
<td>NA</td>
<td>97%</td>
</tr>
<tr>
<td>Scher et al Dana Farber</td>
<td>97%</td>
<td>89%</td>
<td>NA</td>
<td>98%</td>
</tr>
<tr>
<td>Cohen et al Pensylvania</td>
<td>NA</td>
<td>81%</td>
<td>NA</td>
<td>97%</td>
</tr>
<tr>
<td>Almeida et al Mount Sinai</td>
<td>94%</td>
<td>94%</td>
<td>NA</td>
<td>94%</td>
</tr>
<tr>
<td>Moore et al Mayo clinic</td>
<td>94%</td>
<td>94%</td>
<td>NA</td>
<td>97%</td>
</tr>
<tr>
<td>Weinstein Pensylvania 2010</td>
<td>98%</td>
<td>82%</td>
<td>NA</td>
<td>98%</td>
</tr>
<tr>
<td>Weinstein Pensylvania 2012</td>
<td>97%</td>
<td>NA</td>
<td>NA</td>
<td>97%</td>
</tr>
</tbody>
</table>

~94% ~91% ~96% ~86%

- Difference in morbidity!

Adapted from Almeida Laryngoscope 2014
68 patients recruited

68 patients randomly assigned

34 allocated to radiotherapy group
- 32 received allocated intervention
 - 9 received radiotherapy alone
 - 23 received concurrent CRT
- 2 lost to follow-up*

34 allocated to TORS + ND group
- 34 received allocated intervention
 - 10 received TORS + ND alone
 - 16 received TORS + ND plus RT
 - 8 received TORS + ND plus CRT

34 analysed

34 analysed

MDADI Total

Time (Years)

RT Arm
TORS Arm

p < 0.0001

MDADI Total at 1-Year

RT
CRT
TORS
TORS-RT
TORS-CRT

Nichols Lancet Oncol 2019
Orator study

- Survival was similar
- Spectrum of Toxicity and QOL at 1 year differed between arms

<table>
<thead>
<tr>
<th>Favor RT</th>
<th>Favor Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Swallowing</td>
<td>• Less Tinnitus and Hearing Loss</td>
</tr>
<tr>
<td>• MDADI</td>
<td>• Less neutropenia</td>
</tr>
<tr>
<td>• FOIS</td>
<td>• Less constipation</td>
</tr>
<tr>
<td>• Less pain and pain medications use</td>
<td></td>
</tr>
<tr>
<td>• No bleeding</td>
<td></td>
</tr>
<tr>
<td>• Less Trismus</td>
<td></td>
</tr>
<tr>
<td>• Less shoulder impairment</td>
<td></td>
</tr>
</tbody>
</table>

Inclusion criteria:
- T1-2 (UICC 7th ed.)
- N0-2 <4 cm in any plane
- No ECE on imaging

Nichols Lancet Oncol 2019
Treatment of early oropharynx cancer

Surgery for T1-2, N0-1

EORTC 1420
"Best of" trial

- T1-2 N0, M0
- HPV status
- 170, 1:1 randomisation
- IMRT or TORS
- Prim. endpoint MDADI over 1 year
- Sec. QoL, LRC and survival
- Cost-effectiveness

DAHANCA 34
"QoLATI"

- T1-2 N0-1, M0 (UICC7th ed)
- HPV status
- 138, 2:1 randomisation
- TORS or IMRT
- Prim. endpoint MDADI at 1 year
- Sec. QoL, MBS, FEES, LRC and survival
- Cost-effectiveness

Do not duplicate or distribute without permission from author and ESO
Treatment of (early) oropharynx cancer

Unilateral radiotherapy

Lateral head and neck cancers rarely spread to contralateral neck nodes

Lateral oropharyngeal tumors include tonsil and tonsillar fossa

DAHANCA 12 - 134 pts with tonsillar cancer

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral RT</th>
<th>Bilateral RT</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3+4</td>
<td>11%</td>
<td>10%</td>
<td>N.S.</td>
</tr>
<tr>
<td>N+</td>
<td>73%</td>
<td>77%</td>
<td>N.S</td>
</tr>
<tr>
<td>Stage 3 + 4</td>
<td>78%</td>
<td>79%</td>
<td>N.S</td>
</tr>
</tbody>
</table>

Jensen Radiother Oncol 2007
Unilateral radiotherapy to lateralized OPCC

Loco-regional control

- Ipsilateral
- Bilateral
- Ipsilateral despite midline involvement

- Uni RT
- Bi RT
Unilateral IMPT to lateralized OPCC

Comparison of baseline to end-of-treatment outcomes for pts w/ ipsi IMPT or IMRT

Inclusion criteria:

- Treated off-protocol, 2015-18
- Parotid, submandibular, or lateralized tonsil
- Adjuvant or definitive ipsilat RT +/-chemo
- RT dose >60 Gy
- Completed PRO questionnaires

- N=37; 23 IMRT and 14 IMPT
- Comparable in terms of dose and volume
Unilateral IMPT to lateralized OPCC

Comparison of baseline to end-of-treatment outcomes for pts w/ ipsi IMPT or IMRT

- EORTC QLQ-H&N 35: pain
 - PROTON IMRT
 - Baseline: -5
 - End of treatment: -29.8

- EORTC QLQ-H&N 35: swallowing function
 - PROTON IMRT
 - Baseline: -1.1
 - End of treatment: -23.3
 - p = 0.02

- EORTC QLQ-H&N 35: speech
 - Baseline: -18.9
 - End of treatment: -44.2

- EORTC QLQ-H&N 35: senses
 - PROTON IMRT
 - Baseline: -5
 - End of treatment: -26.7
 - p = 0.01
Unilateral IMPT to lateralized OPCC

Comparison of baseline to end-of-treatment outcomes for pts w/ ipsi IMPT or IMRT

- EORTC QLQ-H&N 35: pain

Oral Cavity

- **Constrictors**
 - PROTON IMRT
 - EORTC C

Contralateral Submandibular

Contralateral Parotid

Delivered with permission from author and ESO.
Candidates
- Squamous cell carcinoma of the pharynx or larynx (excl. st. 1/2 glottic larynx)
- Indication for radiotherapy with curative intent
- Absence of severe co-morbidity

Photon doseplan >10% risk of either dysphagia or xerostomia
- DAHANCA score >= grade 2
- Moderate-severe xerostomia (EORTC HN 35)

\[\Delta \text{NCPT} > 8\% \]
- Treatment and follow-up according to routine guidelines

Proton doseplan Proton/photon comparison
\[\Delta \text{NCPT} > 8\% \]
for either dysphagia or xerostomia

Randomisation
Protons vs photons 2:1
Endpoint based on selection criterion (\(\Delta \text{NTCP}\))

Dysphagia (n=242)
Assessed at 6 months

Xerostomia (n=363)
Assessed at 6 months

Secondary endpoints analysed for both groups combined
Treatment of (locally advanced) oropharynx cancer
Radiotherapy in oropharyngeal cancers

MARCH-HPV Meta-analysis (RTOG9003, DAHANCA6&7, ARTSCAN, RTOG 0129)

PFS

Survival

HPVpos (non smoker)

HPVpos (smoker)

HPVneg (non smoker)

HPVneg (smoker)

At risk

\[
\begin{array}{cccccccc}
\text{p16+ / Never} & 86 & 76 & 70 & 60 & 34 & 10 & 8 \\
\text{p16+ / Former-current} & 252 & 170 & 145 & 126 & 78 & 38 & 34 \\
\text{p16- / Never} & 21 & 10 & 9 & 9 & 3 & 3 & 1 \\
\text{p16- / Former-current} & 290 & 99 & 68 & 55 & 30 & 14 & 12 \\
\end{array}
\]
Meta-analysis on altered fractionation HNSCC

<table>
<thead>
<tr>
<th>CF</th>
<th>HF</th>
<th>CB</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>70Gy/ 2.0 Gy/ 7w</td>
<td>80.5Gy/ 2x1.15 Gy/ ti=6h/ 7w</td>
<td>70Gy/ 2.0 Gy/ 5w</td>
<td>66-68Gy/ 2.0 Gy/ 5.5w</td>
</tr>
</tbody>
</table>

Expectations:

- Increased tumor control
- Increased early reactions
- Unchanged or decreased late damage

Lacas Lancet Oncol 2017
Meta-analysis on altered fractionation HNSCC

Randomized trials 1970-2010; 33 trials included (11423 individual patients data)

- Increasing the therapeutic window:
- Increased control (and survival)
- Increased acute grade 3+4 toxicity
- NO increase in late morbidity

Lacas Lancet Oncol 2017
HPV/p16 and accelerated fractionation?

Loco-regional tumour control – DAHANCA7 trial

- There are no evidence to suggest that HPV p16+ and HPV p16- OPCC should be treated differently in terms of fractionation (Hyperfractionation can be discussed)

HR=0.77 [0.60-0.99]
HR=0.57 [0.34-0.97]
Meta-analysis on chemotherapy in HNSCC

<table>
<thead>
<tr>
<th>Timing</th>
<th>No. Deaths / No. Entered</th>
<th>O-E</th>
<th>Variance</th>
<th>Hazard Ratio</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LRT+CT</td>
<td>LRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant</td>
<td>3171/4824</td>
<td>3386/4791</td>
<td>-326.4</td>
<td>1587.7</td>
<td>0.81 [0.78;0.86]</td>
</tr>
<tr>
<td>Induction</td>
<td>1877/2740</td>
<td>1813/2571</td>
<td>-40.0</td>
<td>900.7</td>
<td>0.95 [0.90;1.02]</td>
</tr>
<tr>
<td>Adjuvant</td>
<td>631/1244</td>
<td>661/1323</td>
<td>17.9</td>
<td>317.4</td>
<td>1.06 [0.95;1.18]</td>
</tr>
<tr>
<td>Total</td>
<td>5679/8808</td>
<td>5863/8685</td>
<td>-348.5</td>
<td>2605.8</td>
<td>0.88 [0.85;0.92]</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2_{107} = 179.8$, $p = 0.0001$; $p = 4.1\%$ LRT+CT better | LRT better

Test for interaction: $\chi^2_2 = 26.60$, $p = 0.0001$

LRT+CT effect: $p < 0.0001$

Absolute difference at 5 years ± standard deviation:

- Concomitant chemotherapy: $6.5 \pm 1.0\%$
- Control: 33.7%
- LRT: 27.2%

Pignon Radiother Oncol 2009
Lessons learned from the MACH-NC meta-analyses

- Small benefit of CT on survival: confirmed
- Higher benefit with concomitant CH: confirmed (8%)
- Benefit with concomitant CDDP: 11% at 5 years
- Benefit of CT observed in post-op, and with primary RT (conventional/altered fractionation)
Meta-analysis on AF and C-RT in HNSCC

Randomized trials 1970-2010; 33 trials included (11423 individual patients data)

<table>
<thead>
<tr>
<th>Events (n)/patients (N)</th>
<th>Observed minus expected</th>
<th>Variance</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altered fractionation radiotherapy</td>
<td>Concomitant chemoradiotherapy</td>
<td></td>
</tr>
<tr>
<td>INRC-HN-94</td>
<td>58/66</td>
<td>55/70</td>
<td>5.9</td>
</tr>
<tr>
<td>ORO 9301</td>
<td>50/65</td>
<td>42/64</td>
<td>6.2</td>
</tr>
<tr>
<td>EORTC 22962</td>
<td>7/13</td>
<td>9/15</td>
<td>0.4</td>
</tr>
<tr>
<td>GORTEC 9902</td>
<td>207/281</td>
<td>196/279</td>
<td>14.7</td>
</tr>
<tr>
<td>TMH 1114</td>
<td>34/68</td>
<td>26/65</td>
<td>6.3</td>
</tr>
<tr>
<td>Total</td>
<td>356/493</td>
<td>328/493</td>
<td>33.0</td>
</tr>
</tbody>
</table>

χ² test for heterogeneity: p=0.087, I²=0%

Treatment effect: p=0.0098

Lacas Lancet Oncol 2017

Do not duplicate or distribute without permission from author and ESO.
Altered fractionation or C-RT?

GORTEC 9902

70 Gy / 7 weeks
5FU / carboplatin concomitant (3 cycles)

Accelerated concomitant boost RT
70 Gy / 6 weeks
5FU / carboplatin concomitant (2 cycles)

Very accelerated RT 64.8 Gy / 3.5 weeks

At 3 years (95% CI)
Conventional CRT 42.6% (37.0-48.5)
Accelerated RT-CT 39.4% (33.8-45.3)
Very accelerated RT 36.5% (31.1-42.3)

Bourhis Lancet Oncol 2012
RTOG 0129: Is AFX-C better than SFX-C?

Nguyen-Tan, JCO 2010

70 Gy (7w) + cis x 3 = 70 Gy (6w) + cis x 2
Keeping the entire individual in mind

Overall survival by age

<table>
<thead>
<tr>
<th>Category</th>
<th>No. Events / No. Entered</th>
<th>Hazard ratio (Alt. fractionated RT/Control)</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>=<50</td>
<td>1768/1311</td>
<td></td>
<td>0.97 [0.8650.894]</td>
</tr>
<tr>
<td>51-60</td>
<td>1455/2300</td>
<td></td>
<td>0.99 [0.8830.899]</td>
</tr>
<tr>
<td>61-70</td>
<td>1521/2346</td>
<td></td>
<td>0.89 [0.7841.006]</td>
</tr>
<tr>
<td>>70</td>
<td>7843/1085</td>
<td></td>
<td>0.90 [0.8691.23]</td>
</tr>
<tr>
<td>Total</td>
<td>4528/7042</td>
<td></td>
<td>0.85 [0.7860.897]</td>
</tr>
</tbody>
</table>

Test of interaction: p = 0.02
Test for trend: p = 0.002
Test for trend: p = 0.003

Alt. Frac. RT better | Control better
Alt. fractionated RT effect p = 0.02
Cause of death in the elderly

<table>
<thead>
<tr>
<th></th>
<th>MAR CH</th>
<th>51 - 60</th>
<th>61 - 70</th>
<th>>70</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer death</td>
<td>74.7 %</td>
<td>68.1 %</td>
<td>60.8 %</td>
<td>47.2 %</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non cancer death</td>
<td>18.2 %</td>
<td>23.8 %</td>
<td>29.3 %</td>
<td>41.2 %</td>
<td><0.0001</td>
</tr>
<tr>
<td>Unknown cause of death</td>
<td>7.0 %</td>
<td>8.1 %</td>
<td>9.9 %</td>
<td>11.6 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MACH-NC</th>
<th>51 - 60</th>
<th>61 - 70</th>
<th>>70</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer death</td>
<td>80.4 %</td>
<td>73.1 %</td>
<td>68.8 %</td>
<td>54.6 %</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non cancer death</td>
<td>14.6 %</td>
<td>21.3 %</td>
<td>26.5 %</td>
<td>38.7 %</td>
<td><0.0001</td>
</tr>
<tr>
<td>Unknown cause of death</td>
<td>5.0 %</td>
<td>5.6 %</td>
<td>4.7 %</td>
<td>6.7 %</td>
<td></td>
</tr>
</tbody>
</table>
What is the place for EGFR-I?

Randomized phase III: n=424
RTOG 0522: C-RT +/- cetuximab

Ang, JCO 2010

[Graphs showing progression-free survival, overall survival, locoregional failure, and distant metastasis rates over time for RT +/– cetuximab.]
Triplets better than dublets?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 0522</td>
<td>SFX+cis +/- cetuximab</td>
<td>N.S</td>
</tr>
<tr>
<td>Concert 1</td>
<td>SFX+cis +/- panitumumab</td>
<td>N.S</td>
</tr>
<tr>
<td>DAHANCA 19</td>
<td>AF+cis +/- zalutumumab</td>
<td>N.S</td>
</tr>
</tbody>
</table>

EGFR-I and cisplatin both inhibits DNA repair (although by different mechanisms)
De-escalation of treatment in HPV/p16+ OPCC

HPV, smoking and risk groups in RTOG 0129

- p16pos - smoking
- p16pos + smoking (p16neg - smoking)
- High risk

Overall Survival (%)

Years since Randomization

Ang Sem Rad Oncol 2012
De-escalation of treatment in HPV/p16+ OPCC

Primary RT

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Stage</th>
<th>Smoking</th>
<th>Design</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-Escalate</td>
<td>III-IVa</td>
<td>non-smoking smoking< N2b</td>
<td>70Gy + 3-weekly cddp vs 70 Gy + weekly cetuximab</td>
<td>2018</td>
</tr>
<tr>
<td>NRG HN002</td>
<td>III-IV</td>
<td>< 10 pack/y</td>
<td>60 Gy (5w) + weekly cddp vs 60 Gy (5w)</td>
<td>2018</td>
</tr>
<tr>
<td>Quaterback</td>
<td>III-IV</td>
<td>≥ 20 pack/y</td>
<td>TPFx3 + 70Gy and weekly carbo vs TPFx3 + 56Gy and weekly carbo</td>
<td>2021</td>
</tr>
<tr>
<td>RTOG-1016</td>
<td>III-IV</td>
<td>all pts</td>
<td>70 Gy + CDDP (x2) vs 70 Gy + weekly cetuximab</td>
<td>2018</td>
</tr>
<tr>
<td>TROG-12.01</td>
<td>III-IV</td>
<td>non-smoking smoking< N2b</td>
<td>70Gy + weekly cddp vs 70 Gy + weekly cetuximab</td>
<td>2020</td>
</tr>
</tbody>
</table>

PORT

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Stage</th>
<th>Smoking</th>
<th>Design</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEPT</td>
<td>III-IV</td>
<td>all pts</td>
<td>PORT 60 Gy vs PORT 60 Gy + weekly cddp</td>
<td>2021</td>
</tr>
<tr>
<td>ECOG-331*</td>
<td>III-IV R1 ≠ECS</td>
<td>< 10 packs/y > 10 packs/y</td>
<td>TOS + 60 Gy vs TOS + 50 Gy</td>
<td>2016</td>
</tr>
<tr>
<td>PATHOS</td>
<td>I-IV</td>
<td>non-smoking smoking< N2b</td>
<td>1) PORT 60Gy vs PORT 50Gy 2) PORT 60Gy + CH vs PORT 60Gy</td>
<td>2019?</td>
</tr>
</tbody>
</table>
De-escalation of treatment in HPV/p16+ OPCC

RTOG 1016: a randomised, multicentre, non-inferiority trial

Stratify:
- T 1-2
- T3-4
- N0-2a
- N2b-c
- Smoking
- Zubrod 1-2

HR 1.45, one-sided 95% upper CI 1.94

N=700

987 pts recruited before closure in July 2014

HR 2.05 (95% CI 1.35–3.10)

Do not duplicate or distribute without permission from author and ESO

Gillison Lancet 2018
De-escalation of treatment in HPV/p16+ OPCC

De-ESCALaTE: an open-label randomised controlled phase 3 trial

Primary outcome

- Overall
 - Grade 3-5: 4.81 (4.23–5.40) vs 4.82 (4.22–5.43; p = 0.98)
 - All grades: 29.15 (27.33–30.97) vs 30.05 (28.26–31.85; p = 0.49)

Secondary outcomes

- Acute short-term toxicities
 - Grade 3-5: 4.43 (3.88–4.97) vs 4.35 (3.84–4.86; p = 0.84)
 - All grades: 19.96 (18.81–21.12) vs 20.35 (19.18–21.52; p = 0.64)

- Severe late toxicities
 - Grade 3-5: 0.41 (0.29–0.54) vs 0.48 (0.30–0.67; p = 0.53)
 - All grades: 9.44 (8.53–10.34) vs 9.87 (9.02–10.72; p = 0.49)

Table 2: Mean number of acute, late, and overall toxicity events per patient, by treatment group

N=334
Conclusions

- Primary Surgery for early OPCC if multimodal treatment can be avoided
- Altered fractionation or chemo-radiotherapy for locally advanced OPCC
- Better outcome for HPV+ patients
- Not the proper time yet for treatment de-intensification or change in treatment strategy!
- Different trials for HPV+ and HPV- patients
- Routine p16 staining for oropharyngeal SCC
Thank you